Ergodicity and mixing of non-commuting epimorphisms
نویسندگان
چکیده
منابع مشابه
Ergodicity and Mixing of Noncommuting Epimorphisms
We study mixing properties of epimorphisms of a compact connected finite-dimensional abelian group X . In particular, we show that a set F , |F | > dimX , of epimorphisms of X is mixing iff every subset of F of cardinality (dimX)+1 is mixing. We also construct examples of free nonabelian groups of automorphisms of tori which are mixing, but not mixing of order 3, and show that, under some irred...
متن کاملcommuting and non -commuting graphs of finit groups
فرض کنیمg یک گروه غیر آبلی متناهی باشد . گراف جابجایی g که با نماد نمایش داده می شود ،گرافی است ساده با مجموعه رئوس که در آن دو راس با یک یال به هم وصل می شوند اگر و تنها اگر . مکمل گراف جابجایی g راگراف نا جابجایی g می نامیم.و با نماد نشان می دهیم. گرافهای جابجایی و ناجابجایی یک گروه متناهی ،اولین بار توسطاردوش1 مطرح گردید ،ولی در سالهای اخیر به طور مفصل در مورد بحث و بررسی قرار گرفتند . در ،م...
15 صفحه اولQuantum Ergodicity and Mixing of Eigenfunctions
This article surveys mathematically rigorous results on quantum ergodic and mixing systems, with an emphasis on general results on asymptotics of eigenfunctions of the Laplacian on compact Riemannian manifolds. Quantum ergodicity and mixing belong to the field of Quantum Chaos, which studies quantizations of ‘chaotic’ classical Hamiltonian systems. The basic questions are, how does the chaos of...
متن کاملOn the eigenvalues of non-commuting graphs
The non-commuting graph $Gamma(G)$ of a non-abelian group $G$ with the center $Z(G)$ is a graph with thevertex set $V(Gamma(G))=Gsetminus Z(G)$ and two distinct vertices $x$ and $y$ are adjacent in $Gamma(G)$if and only if $xy neq yx$. The aim of this paper is to compute the spectra of some well-known NC-graphs.
متن کاملOn Commuting and Non-Commuting Complexes
In this paper we study various simplicial complexes associated to the commutative structure of a finite group G. We define NC(G) (resp. C(G)) as the complex associated to the poset of pairwise non-commuting (resp. commuting) sets of nontrivial elements in G. We observe that NC(G) has only one positive dimensional connected component, which we call BNC(G), and we prove that BNC(G) is simply conn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the London Mathematical Society
سال: 2007
ISSN: 0024-6115
DOI: 10.1112/plms/pdm007